Все о тюнинге авто

Площадь повреждений взлетно посадочной полосы. Взлетный курс или рабочая взлетно-посадочная полоса

Страх перемещений по воздуху довольно распространен. Пассажиры, которые пытаются бороться с ним путем изучения статистики авиаперелетов, знают, что большинство несчастных случаев происходит при взлете и во время посадки.

Аэропорт Принцессы Юлианы, остров Святого Мартина

Однако есть аэропорты, садиться и взлетать в которых опасаются не только самые хладнокровные пассажиры, но и высокопрофессиональные пилоты.

Паро, Бутан

Взлетно-посадочная полоса расположена между гималайскими вершинами-пятитысячниками. Аэропорт считается одним из самых сложных для посадки. Чтобы ее совершить, пилотам приходится закладывать виражи между гор, что возможно только в светлое время суток.


Взлетно-посадочная полоса Матекане, Лесото


Полоса протяженностью 400 метров заканчивается обрывом высотой 600 метров. Редкому самолету удается разогнаться для набора высоты, не достигнув конца взлетно-посадочной полосы. Согласно идее проектировщиков аэропорта, авиасуда для набора нужной полетной высоты должны совершать свободное падение.

Хуанчо-Ираускин, остров Саба


Взлетно-посадочная полоса аэропорта самая короткая в мире - длина составляет менее 400 метров. Посадка здесь не для слабонервных: пилот должен направить судно прямо на скалу, в последний момент перед приземлением совершить крутой вираж вправо, чтобы оказаться на возвышенности, с трех сторон омываемой океаном. Приземляться в аэропорту разрешено самолетам трех типов, и реактивные не входят в их число.

Аэропорт Принцессы Юлианы, остров Святого Мартина

Главный аэропорт Карибских островов. При заходе на посадку самолеты пролетают прямо над головами (на высоте 10–20 метров) отдыхающих на пляже Махо, так как полоса расположена вплотную к нему. При взлете пилот вынужден совершить U -образный поворот, чтобы не врезаться в скалу, которой полоса заканчивается.


Аэропорт имени Тэнцинга и Хиллари, город Лукла, Непал


Аэропорт, где пилот не имеет права на ошибку, в 2008 году был переименован в честь первых покорителей Эвереста: Тенцинга Норгея и Эдмунда Хиллари. После продолжительного маневрирования среди скал судно необходимо резко направить вниз, чтобы избежать столкновения со скалой, которой оканчивается короткая, протяженностью 537 метров взлетно-посадочная полоса. К слову, полоса начинается сразу после обрыва и расположена под уклоном. Взлеты и посадки выполняются в аэропорту исключительно по правилам визуальных полетов, без использования современных систем навигации.

Аэропорт Мадейры, Португалия


Главный аэропорт Мадейры когда-то был еще страшнее, чем сейчас. Однако его реконструировали после катастрофы 1977 года, унесшей жизни 131 пассажира. Сегодня две взлетно-посадочные полосы, расположенные на скале, имеют протяженность 1,8 километра. Однако значительная часть полотна представляет собой эстакаду, держащуюся на 180 столбах диаметром 3 метра и высотой до 50 метров. За счет гор и моря аэропорт оказался в зоне повышенной турбулентности.

Барра, Шотландия

Функционирование расположенного на пляже аэропорта периодически прерывается естественным образом - во время приливов, размывающих взлетно-посадочную полосу на песке. Также невозможны здесь приземления (почти приводнения) ночью.


Гибралтарский международный аэропорт


Аэропорт принадлежит Великобритании. Пилотам, совершающим здесь посадку, нужно хорошо владеть тормозами, чтобы не утопить самолет в проливе, которым оканчивается взлетно-посадочная полоса. Кроме того, нужно следить за движением автомобилей, следующих по пересекающей полосу дороге.

Веллингтон, Новая Зеландия

Крайне загруженный аэропорт имеет всего одну взлетно-посадочную полосу, да и та относительно короткая - чуть больше 1,8 километра. Это обстоятельство, а также необходимость маневрировать среди холмов делают невозможной посадку крупных самолетов. Что же касается небольших судов, то их пилотам жизнь омрачают неимоверно сильные воздушные потоки.

Александрос Пападиамантис, остров Скиатос, Греция


Посадка в аэропорту Скиатоса далека от идеала и способна обеспечить острые ощущения даже самым хладнокровным пилотам. Относительно короткая (1,6 километра) и узкая взлетно-посадочная полоса заканчивается в океане. На побережье - отдыхающие. Поэтому пилотам требуется воля и умение сильно давить на тормоз. Взлет щекочет нервы не меньше.

Конгоньяс, Бразилия


Расположенный в нескольких километрах от центра города Сан-Паулу аэропорт - подарок для пассажиров, но не для пилотов, которым приходится маневрировать между высотными зданиями. Также здесь есть проблемы с покрытием взлетно-посадочной полосы - она часто оказывается скользкой из-за дождей. Так, в 2007 году по этой причине при посадке разбился самолет, в результате крушения 187 пассажиров погибли в салоне, 12 - на земле.

Аэропорт Густав III, остров Сен-Бартелеми, заморское сообщество Франции


Расположенный на острове в Карибском море, аэропорт имеет взлетно-посадочную полосу протяженностью всего 650 метров. Также она очень узкая, поэтому при каждой посадке в непосредственно близости от склонов самолет рискует упасть в океан.

Нарсарсуак, Гренландия

Красивейшие пейзажи за окном не дают пилотам повода расслабляться - местность славится повышенной турбулентностью, из-за чего к полетам здесь допускаются только хорошо подготовленные пилоты, знающие местность.

Международный аэропорт Тонконтин, Гондурас

Здесь с 2008 года запрещена посадка больших самолетов. Причиной вето стала авария, в результате которой самолет съехал со взлетно-посадочной полосы и врезался в набережную, смяв несколько автомобилей. Пострадали 65 человек, 5 погибли.


Куршевельский аэропорт, Французские Альпы


Сажать самолет на расположенной среди гор 525-метровой взлетно-посадочной полосе, имеющей уклон 18,5 %, имеют право только сертифицированные пилоты.

Кито Марискал Сукре, Эквадор

Находится в центре густонаселенной столицы Эквадора. Пилотам приходится сажать самолет на ухабистую, окутанную туманом взлетно-посадочную полосу среди гор.


Кай-Так, Гонконг (ныне закрыт)


Принимавший самолеты с 1925 по 1998 год аэропорт предусматривал посадку над загруженным портом и густонаселенными районами. В данных условиях и при сильном переменчивом ветре пилотам приходилось на высоте 200 метров до посадки разворачивать судно на 47°.

Ice Runway, Антарктика


Взлетно-посадочную полосу на острове Росса сооружают здесь ежегодно, аэропорт действует начиная с декабря. Основная сложность - в погодных условиях. Чтобы посадка была возможна, лед должен выдержать самолет. Поэтому пилоты и диспетчеры тщательно следят за температурой воздуха и таянием льдов и снега. Допустимое погружение судна в лед при посадке составляет примерно 25 сантиметров.

Фото: Ywchow, Scott Wylie (CC-BY), MartinPUTZ (CC-BY-SA), Konstantin von Wedelstaedt (GNU FDL), Peter Forster (CC-BY-SA), Indrik myneur (CC-BY), Photo courtesy of Tom Claytor - www.claytor.com , Andrew Cooper (CC-BY), Fyodor Borisov (CC-BY-SA), Mariordo (CC-BY-SA), iStock (x2), Timo Breidenstein (GNU FDL)

Все взлётно-посадочные полосы (ВПП) аэродромов обязательно имеют идентификатор торцов - маркированный номер, который ассоциативен с магнитным курсом ВПП (Magnetic Heading). В США и некоторых странах, подверженных американскому влиянию, на аэродромах используется истинный курс, который соответствует магнитному +/- поправка на магнитное склонение в данной местности.

Курс ВПП варируется от 1° до 360° (нулевого курса ВПП нет, вместо него указывается курс 360°). Относительно курса ВПП строятся все инструментальные и визуальные схемы захода на посадку (Approach) и процедуры выхода (SID) на каждом аэродроме.



Рассмотрим для примера германский международный аэропорт Дрезден: код ИКАО - EDDC, код ИАТА - DRS. Данный аэродром имеет одну ВПП 04/22 с курсами (магнитными) 039° и 219° соответственно. Разница между курсами ВПП всегда равна 180. 04 и 22 - идентификаторы торцов ВПП. Идентификаторы торцов ВПП зависят от магнитного курса ВПП и определяются согласно следующей таблицы:

Идентификатор ВПП

Магнитный курс,°

(от и до)

Идентификатор ВПП

Магнитный курс

(от и до)

При изменении магнитного поля Земли (а конкретно - магнитного склонения в месте, где расположен аэродром), магнитный курс ВПП может со временем измениться на 1-2 градуса. В этом случае аэродром проверяет правильность своего идентификатора и при необходимости определяет новый, так ВПП 01/19 через несколько лет может превратиться, как в ВПП 02/20, так или в ВПП 18/36.


В крупных аэропортах может быть две и более ВПП, и, в зависимости от розы ветров, часто располагают 2 или 3 ВПП параллельно друг другу. В этом случае курсы ВПП у всех этих двух или трех полос одинаковые, и идентификаторы торцов ВПП тоже одинаковые. Чтобы обозначить каждую ВПП индивидуально, отлично от других с числовому обозначению идентификаторов ВПП добавляют букву:

L - левая ВПП (LEFT);

R - правая ВПП (RIGHT);

C - средняя ВПП (CENTER);

В качестве примера - аэропорт Москва Домодедово - имеет две параллельные ВПП. Соответственно, они имеют такие обозначения: ВПП 14L/32R и ВПП 14R/32L.

А как же быть, в случае особо крупного аэродрома, имеющего более трех ВПП, например, 4? Ведь в аэропорту не может быть две левые взлетно-посадочные полосы, или две средние. Какая из них более средняя? :)

Таких аэродромов не много, но они есть, и они, чтобы не было путаницы, выкручиваются из этой ситуации так: лишним ВПП (четвертой и следующим, а иногда и третьей) даются другие идентификаторы, даже в том случае, если магнитный курс у всех ВПП одинаков.



Например, аэропорт Денвер (США) имеет ВПП: 16R/34L, 16L/34R и 17R/35L, 17L/35R, причем у всех этих четырех полос магнитный курс 173° и 353°.

Или, например, аэропорт Хьюстон (США) имеет ВПП: 08L/26R, 08R/26L и 09/27, причем у всех этих трех полос магнитный курс 087° и 267°.

ВЗЛЁТНО-ПОСА́ДОЧНАЯ ПОЛОСА́ (ВПП), часть аэродрома, входящая в состав лётного поля, специально подготовленная и оборудованная для взлёта и посадки воздушных судов. Она может быть с искусственным покрытием (гравийное, асфальтовое, железобетонные, металлические листовые полосы и палубы авианесущих кораблей) и грунтовой. В пределах ВПП расположены воздушные участки взлётной дистанции (расстояние по горизонтали, проходимое самолётом от линии старта до точки набора высоты) и посадочной дистанции (расстояние по горизонтали, проходимое самолётом от момента пересечения входной кромки ВПП и до полной остановки после пробега) с некоторым запасом по длине.

Длина ВПП определяется взлётно-посадочными характеристиками самолёта, при этом учитываются возможные отклонения в технике пилотирования при эксплуатации самолёта на конкретном аэродроме. ВПП аэродромов, находящихся в высокогорных регионах или в регионах с высокой температурой воздуха, имеют увеличенную длину, т. к. атмосферное давление и температура наружного воздуха являются факторами, влияющими на работу двигателей (тягу) и длину разбега. Для обеспечения безопасности при выкатывании самолёта за пределы ВПП при прерванном взлёте или аварийной посадке существуют примыкающие к ВПП концевые полосы безопасности. ВПП может быть оборудована радиотехническими средствами, которые в сочетании с бортовым оборудованием летательного аппарата (ЛА) обеспечивают успешное выполнение посадки в автоматическом режиме или при частичном участии пилотов. Потребная для базирования длина ВПП определяется как максимальная из суммы длин разбега и лётной дистанции и длин посадочной дистанции и пробега исходя из условия отказа одного двигателя. При отказе возможны два случая, связанных с решением пилота: продолжать взлёт или прервать его. В первом случае пилот применяет все средства для увеличения (форсирования) тяги работающих двигателей, чтобы выполнить продолженный взлёт. Во втором случае при решении о прекращении взлёта пилот использует все средства – аэродинамическое торможение, реверс тяги, тормозной парашют и т. д. для гашения скорости и реализует прерванный взлёт. Главным критерием выбора является скорость принятия решения, то есть скорость разбега, при которой в случае отказа одного двигателя возможно как безопасное прекращение, так и безопасное продолжение взлёта.

Размер ВПП зависит от лётно-технических характеристик (ЛТХ) воздушного судна, продольного уклона и сцепных качеств поверхности, состояния атмосферы (температура, плотность и давление воздуха) в районе аэродрома. Ширина ВПП определяется колеёй шасси и радиусами исходя из условий разворота на 180 о воздушного судна на ВПП. В технических описаниях воздушных судов параметры взлётно-посадочных дистанций даются применительно к международной стандартной атмосфере. ВПП имеют маркированный номер обычно согласно магнитному курсу, на котором они расположены. Значение градусов округляют до десятков. Если угол ориентации 42 о, а плюс 180 о будет 220 о, то обозначение полосы ВПП 04/22.

Освещение ВПП. Основная задача светового оборудования взлётно-посадочной полосы – обеспечивать безопасную посадку и взлёт воздушных судов в тёмное время суток и в сумерках, а также в условиях ограниченной видимости. Освещение ВПП (огни высокой интенсивности) представляет собой световую полосу чаще всего белого цвета. Светосигнальное оборудование аэродрома состоит из различных групп огней, располагающихся в определённой последовательности и легко различимых при установлении визуального контакта пилота с землёй. В состав группы сигнальных огней входят: огни приближения постоянного и импульсного излучения, огни световых горизонтов, входные огни, огни знака приземления, ограничительные огни (красный свет), огни зоны приземления, боковые огни, глиссадные огни, посадочные огни (жёлтый), огни концевой полосы безопасности (осевые и центральные огни излучают белый свет, а боковые огни – красный), осевые огни ВПП, огни быстрого схода, боковые и осевые рулёжные огни (синий свет, а осевые – зелёный), стоп-огни (красный), предупредительные (жёлтый), заградительные огни (красный), аэродромные световые указатели.

Длина ВПП является определяющим элементом при установлении класса аэродрома. В соответствии с руководящими документами Международной организации гражданской авиации (ИКАО) классификация аэродромов осуществляется по кодовому обозначению. Кодовое обозначение состоит из двух элементов. Элемент 1 является номером, основанным на длине лётной полосы, а элемент 2 является буквой, соответствующей размаху крыла самолёта и расстоянию между внешними колёсами основного шасси в соответствии с таблицами 1, 2:

Таблица 1. Кодовый элемент 1

Таблица 2. Кодовый элемент 2

Кодовая буква Размах крыла Колея основного шасси
A < 15 м < 4,5 м
B 15 – 24 м 4,6 – 6 м
C 24 – 36 м 6 – 9 м
D 36 – 52 м 9 – 14 м
E 52 – 60 м 9 – 14 м

Например, самолёт Ил-96-300 с расчётной длиной взлёта при стандартных атмосферных условиях 2380 м, размахом крыла 57,66 м и расстоянием между внешними колёсами основного шасси 10,0 м соответствует по классификации аэродрому 4Е.

Классификация аэродромов в России отличается от международной.

По длине ВПП и несущей способности покрытия аэродромы разделяются на 6 классов: А – 3200 × 60; Б – 2600 × 45; В – 1800 × 42; Г – 1300 × 35; Д – 1000 × 28; Е – 500 × 21.

По взлётной массе принимаемых самолёто в: вне класса (без ограничения массы) – Ан-124, Ан-225, А380 и т. п.; 1-го класса (75 т и более) – Ту-154, Ил-62, Ил-76 и т. п.; 2-го класса (от 30 до 75 т) – Ан-12, Як-42, Ту-134 и т. п.; 3-го класса (от 10 до 30 т) – Ан-24, Ан-26, Ан-72, Ан-140, Як-40 и т. п.; 4-го класса (до 10 т) – Ан-2, Ан-3Т, Ан-28, Ан-38, Л-410, М-101Т и т. п. У аэродромов вне класса длина ВПП составляет обычно 3500 – 4000 м, 1-го класса – 3000–3200 м, 2-го класса – 2000–2700 м, 3-го класса – 1500–1800 м, 4-го класса – 600–1200 м. Гражданские аэродромы 3-го и 4-го класса относятся к аэродромам местных воздушных линий (МВЛ). Таким образом, 1-й класс примерно соответствует классу А; 2-й класс – Б; 3-й класс – В и Г; 4-й класс – Д. К классу Е относятся полевые и временные аэродромы, посадочные площадки.

Самые длинные ВПП в мире: грунтовая ВПП 17/35 на авиабазе Эдвардс (США), расположенная на поверхности высохшего озера Роджерс – 11 917× 297 м; ВПП в аэропорту города Чамдо (КНР) – 5500 м; ВПП на аэродроме Раменское (ЛИИ им. М. М. Громова, Россия) – 5403× 120 м; на аэродроме Ульяновск-Восточный (Россия) – 5000× 105 м, т. е. в лётно-исследовательских комплексах.

Самые короткие используются для самолётов вертикального взлёта и посадки; по размерам площадь такой ВПП соизмерима с плановой проекцией самолёта.

В одном аэропорту может быть одна (Благовещенск, Байконур– Крайний), две (Шереметьево, Домодедово, Внуково, Сочи), три (Цюрих), четыре (Владивосток, Франкфурт-на-Майне, Париж– Шарль-де-Голь), шесть (Чикаго О"Хара) ВПП. Полосы располагают так, чтобы взлёт и посадка осуществлялись максимально против ветра и имели свободные подходы.

Независимыми являются ВПП, обеспечивающие безопасность одновременного использования полос в режиме чередующихся взлётов и посадок. Как правило, это две параллельные ВПП на расстоянии не менее 1300 м, с расположенным между ними аэровокзальным комплексом. Максимальной пропускной способностью обладает компоновка четырёх попарно параллельных полос.

Зависимыми считаются ВПП, одновременная лётная работа на которых допускается лишь с учётом увязки взлётов и посадок на обоих ВПП по времени.

Специализированными считаются ВПП, предназначенные для выполнения однотипных лётных операций, т. е. только взлётов или только посадок.

Минимальный интервал времени между последовательными взлётами или посадками называется временем занятости ВПП (например? менее 45 с).

Активная полоса (рабочая полоса) – это взлётно-посадочная полоса, используемая для взлётов и (или) посадок воздушных судов в данный момент времени (рис.)

Разметка ВПП необходима для точной и безопасной посадки самолёта на полосу и включает: концевую полосу безопасности (предназначена для защиты поверхности земли от обдувания мощными струями выхлопов реактивных двигателей, а также для случаев выкатывания за ВПП; летательным аппаратам запрещено находиться на КПБ, потому что её поверхность не рассчитана на их вес); перемещённый порог, либо смещённый торец (зона ВПП, где разрешено руление, разбег и пробег летательных аппаратов, но не посадка); порог, либо торец (начало ВПП, обозначает начало места, где можно приземляться; порог сделан таким образом, чтобы быть заметным издалека, количество линий зависит от ширины ВПП), маркированный номером (если необходимо, буква Л/L – левая, П/R – правая, Ц/С – центральная); зона приземления (начинается в 300 м от порога ВПП); отметки фиксированного расстояния (располагаются через 150 м, при идеальной посадке пилот глазами «удерживает» зону приземления, и касание происходит непосредственно в зоне посадки.), осевая и иногда боковые линии.

Несущая способность искусственного покрытия, предназначенного для воздушных судов с массой на перроне (стоянке) более 5700 кг, определяется по методу классификационное число воздушного судна – классификационное число покрытия (АСN-РСN) с представлением всех следующих данных: классификационное число покрытия (РСN); тип покрытия для определения АСN-РСN; категория прочности грунтового основания; категория максимально допустимого давления в пневматике или величина максимально допустимого давления в пневматике; метод оценки АСN воздушного судна определяется в соответствии со стандартными процедурами, связанными с методом АСN-РСN. Представленное классификационное число покрытия (РСN) показывает, что воздушные суда с классификационным числом воздушного судна (АСN), равным представленному РСN или менее, могут использовать это покрытие с учётом любых ограничений на давление в пневматике или полную полётную массу указанного типа воздушного судна (указанных типов воздушных судов).

Взлётно-посадочная полоса (сокр. ВПП ) - часть аэродрома, входящая в качестве рабочей площади в состав летной полосы. ВПП представляет собой специально подготовленную и оборудованную полосу земной поверхности с искусственным покрытием (ИВПП , искусственная взлетно-посадочная полоса) или грунтовым покрытием (ГВПП , грунтовая взлетно-посадочная полоса), предназначенную для обеспечения взлета и посадки летательных аппаратов (ЛА).

Обозначение и размеры

Взлётно-посадочные полосы нумеруются согласно магнитному курсу, на котором они расположены. Значение курса округляют до десятков и делят на 10. Например, в новосибирском аэропорту Толмачёво, ВПП имеет магнитный курс 72°. Соответственно, её обозначение - ВПП 07 . Следует отметить, что любая полоса «направлена» одновременно в две стороны, разница между которыми равна 180°. Следовательно, противоположный курс - 252°. Таким образом, полоса в Толмачёво будет иметь обозначение ВПП 07/25 .

В более крупных аэропортах строят 2 или более ВПП. Часто они располагаются параллельно - то есть на одном и том же курсе. В таких случаях к числовому обозначению добавляют буквенное - L (левая), C (центральная) и R (правая). К примеру, в чикагском аэропорту Мидуэй сразу три полосы расположены на одном курсе - 133°/313°. Соответственно, они имеют такие обозначения: ВПП 13L/31R, ВПП 13C/31C и ВПП 13R/31L. Однако в парижском аэропорту имени Шарля де Голля, все 4 ВПП имеют одинаковый курс, и во избежание путаницы обозначены как 8L/8R/9L/9R.

В эфире радиообмена между пилотами и диспетчерами полосы называют, например, «ВПП ноль два» или «ВПП один три центр».

Размеры взлётно-посадочных полос могут быть весьма различны, от совсем маленьких - 300 м в длину и 10 м в ширину, до огромных - 5 км в длину и 80 метров в ширину. Самые маленькие используют для малой, спортивной авиации. Самые крупные полосы строят в больших международных аэропортах и на авиазаводах.

Покрытие для полос используется также различное. Существуют грунтовые, гравийные, асфальтовые и бетонные полосы.

Освещение ВПП

Основная задача светового оборудования взлётно-посадочной полосы - обеспечивать безопасную посадку и взлет воздушных судов в тёмное время суток и в сумерках, а также в условиях ограниченной видимости.

См. также

МАДИ(ГТУ)

Реферат по истории Транспортных Комплексов

На тему: «Машины для нанесения разметки»

Студента: Цыплаковой Анастасии Витальевны

Группы: 1АМ1

Москва 2011

Разметка ВПП

Разметка необходима прежде всего для наиболее точной и, следовательно, безопасной посадки самолёта на полосу. Разметка ВПП весьма отлична от той, что мы привыкли видеть на автодорогах.

Слева-направо:

    Концевая полоса безопасности, КПБ (жёлтые шевроны). Предназначена для защиты поверхности земли от обдувания мощными струями выхлопов реактивных двигателей (чтобы не разрушать поверхность, не поднимать пыль и т. д.), а также для случаев выкатывания за ВПП. Летательным аппаратам запрещено находиться на КПБ, потому что её поверхность не рассчитана на их вес.

    Перемещённый порог (либо смещённый торец , белые стрелки) - зона ВПП, где разрешено руление, разбег и пробег летательных аппаратов, но не посадка.

    Порог (либо торец , белые полосы в виде «зебры») - начало ВПП, обозначает начало места, где можно приземляться. Порог сделан таким для того, чтобы быть заметным издалека. Количество линий зависит от ширины ВПП.

    Маркированный номер и, если необходимо, буква (Л/L - левая, П/R - правая Ц/С - центральная)

    Зона приземления (двойные параллельные прямоугольники, начинаются в 300 м от порога ВПП).

    Отметки фиксированного расстояния (большие прямоугольники, располагаются через 150 м). При идеальной посадке пилот глазами «удерживает» зону приземления, и касание происходит непосредственно в зоне посадки.

Необходимым атрибутом разметки являются также осевая и иногда боковые линии.

Рулежная дорожка

Рулёжная дорожка (РД) - часть лётного поля аэродрома, соединяющая между собой элементы лётного поля, специально подготовленная и предназначенная для руления и буксировки воздушных судов. Как правило, имеет искусственное покрытие (асфальт, бетон), на небольших аэродромах - грунтовое.

В аэропортах с высокой интенсивностью полётов обычно имеются высокоскоростные рулёжные дорожки (так называемые РД скоростного схода ), позволяющие воздушному судну быстро освободить ВПП на высокой скорости и обеспечить посадку следующего воздушного судна через короткий интервал времени.

Разметка РД

    Обычная осевая линия. Одиночная непрерывная жёлтая линия от 15 см до 30 см в ширину.

    Усиленная осевая линия. Состоит из жёлтых пунктирных линий, параллельных обычной осевой линии по каждой из её сторон. Осевые линии обычно имеют усиленный вид на протяжении 45,7 м до линии места остановки перед ВПП. Усиленная осевая линия является стандартом для всех аэропортов, сертифицированных по FAR часть 139.

    Разметки границы РД. Используется для определения границы РД, когда граница не соответствует краю покрытия. Это непрерывная разметка состоящая из двойных жёлтых линий; каждая линия должна быть не менее 15 см в ширину и отстоять от своей пары на 15 см.

Пунктирная разметка определяет границу РД на поверхности покрытия, когда прилегающая в РД поверхность предназначена для использования самолётами - например, бетонированная площадка. Подобно сплошной разметке представляет собой пару пунктирных линий 15 см в ширину, отстоящих друг от друга на 15 см. Эти линии в длину занимают 4,5 м с расстоянием между друг другом в 7,5 м.

    Разметка выступов РД. Места для остановки и бетонированные площадки иногда обозначаются вмощённой разметкой, во избежание эрозии. Эти площадки не предназначены для самолётов. Разметка представляет собой жёлтые линии перпендикулярные границе РД - от границы РД до границы покрытия на расстоянии около 3 м.

    Знаки направления нанесенные на поверхность РД. Чёрные знаки на жёлтом фоне. Наносятся тогда, когда невозможно выставить знаки направления движения на пересечениях или в иных требующих этого случаях. Эти знаки наносятся по каждой стороне от осевой линии.

    Знаки местоположения нанесенные на поверхность РД. Жёлтые знаки на чёрном фоне. Они дополняют собой знаки местоположения, расположенные по краям РД и позволяют пилоту подтверждать назначение РД, на которой находится самолёт. Эти знаки располагаются по правой стороне от осевой линии.

    Метки географического положения. Эти метки располагаются в местах низкой видимости (когда видимость вдоль дорожки менее 360 м). Они располагаются по левую сторону от осевой линии относительно направления выруливания; представляют собой чёрные знаки по центру розового круга с чёрным внутренним и белым внешним кольцами.

    Разметка мест остановки перед ВПП. Эта разметка указывает, где необходимо остановить самолёт при приближении к ВПП. Состоит из 4-х жёлтых линий - две сплошные и две пунктирные - на расстоянии 15-30 см друг от друга, пролегающие по ширине РД или ВПП.

Сплошные линии всегда находятся на стороне, где самолёт должен остановиться. Разметка наносится в трёх случаях: остановка перед ВПП на РД, остановка на ВПП, РД расположены в месте приближения к ВПП.

    Разметка мест остановки для (КГС). Состоит из двух сплошных жёлтых линий в 60 см друг от друга, соединенных парами сплошных линий на расстоянии 3 м друг от друга по всей ширине РД (наименьшее расстояние от осевой линии ВПП до маркировки должно составлять не менее 120м 2).

    Разметка остановки для РД/пересечений РД. Состоит из одной пунктирной линии вдоль всей ширины РД.

    Знаки остановки нанесенные на поверхность покрытия. Белые знаки на красном фоне; наносятся вдобавок к знакам расположенным на месте остановки.

РД идентифицируются сочетаниями букв и цифр. Эти идентификационные номера изображены на указателях вдоль РД - чёрным на жёлтом фоне.

Машины для маркировки дорожных покрытий

Классификация средств механизации маркировки .Маркировочные машины отличаются одна от другой многими параметрами. Это объясняется различием стандартов на маркировку в разных странах и различной технологией работ. Маркировочные машины можно условно классифицировать по следующим признакам: функциональному назначению, типу ходового оборудования, применяемому материалу, способу нанесения знака.

Существуют четыре способа механизированного нанесения лакокрасочными и термопластичными материалами маркировочных линий и знаков. Способ наложения пленочных материалов на дорожные покрытия не получил достаточно широкого распространения, как и способ фрезерования выемок под укладку термопластичных материалов, вследствие малой производительности и нехватки наносимого материала. Простейшие из указанных способов - безкомпрессорный и гравитационный.

Безкомпрессорный способ состоит в том, что поток краски из резервуара поступает в краскораспылитель под давлением и, разрушаясь в насадке краскораспылителя, истекает из ее выходного отверстия однофазной струей. Давление в краскопроводной системе создается сжатым воздухом или насосом. Гравитационный способ состоит в том, что материал, из которого выполняют маркировочную линию, разогревается до текучего состояния и вытекает на покрытие под действием собственной силы тяжести. Формирование контуров линии происходит за счет высокой консистенции материала и формы выходного отверстия. Гравитационный метод используют при маркировке термопластичными материалами.

Пневматический способ распыления лакокрасочных материалов является универсальным. Компрессор засасывает воздух из атмосферы и подает его под давлением в коммуникации, которые условно можно разделить на три ветви. По одной ветви сжатый воздух поступает в резервуар для краски, по другой – в бак для растворителя, по третьей -в краскораспылитель. У большинства современных краскораспылителей, установленных на самоходных маркировщиках, управление исполненным механизмом осуществляется пневматически. Следовательно, к краскораспылителю подходят две пневматические ветви – одна для распыления материала, другая для управления его работой. Одновременно с подачей сжатого воздуха в краскораспылитель поступает под давлением лакокрасочный или термопластичный материал, вытесняемый из резервуаров. В насадке краскораспылителя струя материала дробится направленным воздушным потоком, и через щелевое отверстие в насадке истекает двухфазная диспергированная смесь.

Кинетический способ распыления красочных и термопластичных составов заключается в том, что материал поступает в краскораспылитель под давлением 3-12 МПа, создаваемым в системе насосной установкой. При истечении в атмосферу струи краски через отверстие малого сечения в результате резкого перепада давления поток материала дробится на мелкие частицы и образуется факел.

Преимущественное применение кинетического и пневматического способов распыления лакокрасочных материалов обусловлено рядом их положительных качеств.

Основными признаками, определяющими условное разделение маркировщиков на классы, являются назначение машины, объем и вид выполняемых работ. Эти признаки определяют и технические показатели маркировщиков того или иного класса.

Анализ конструкций маркировочных машин позволяет сделать следующие выводы.

Основными элементами, характеризующими высокий уровень машины при соответствующих параметрах силовой установки, являются: краскораспылитель высокой производительности; оборудование для рефлекторизации наносимых линий; механизм перемены шага, обеспечивающий автоматическое нанесение прерывистых линий согласно установленному стандарту. Оборудование для распыления лакокрасочных материалов работает как на основе пневматического распыления с ограничительными дисками и без них, так и на основе безвоздушного распыления материала, что обеспечивает существенное снижение потерь краски и массы оборудования. Визирные устройства большинства машин выполнены в виде указателей штангового типа; оптические системы пока не нашли распространения. Все машины, использующие лакокрасочные составы, имеют систему промывки краскопроводных коммуникаций.

Для расширения области применения все машины оснащены выносными пистолетами-краскораспылителями, а самоходные средней и высокой производительности – еще и кронштейнами для проведения краевой маркировки. Выполняют маркировку подогретыми материалами, для чего машины оснащаются соответствующим оборудованием. Ручные маркировщики, как правило, выполняют в виде самоходных трехколесных тележек. Самоходные маркировщики в зависимости от функционального назначения базируются на аналогичных по конструкции транспортных средствах малой и средней производительности, на специальных и автомобильных шасси.

Подразделения дорожно-эксплуатационных служб нуждаются в различных по назначению машинах. Оснащение маркировочными машинами служб безопасности движения является важным мероприятием в борьбе за снижение числа дорожно-транспортных происшествий.

Машины для маркировки покрытий красками. Маркировочные машины ДЭ-ЗА, ДЭ-3, ДЭ-18А, ДЭ-18 предназначены для нанесения краской пневматическим способом сплошных и прерывистых линий на асфальта- и цементобетонные покрытия городских улиц, автомобильных дорог и аэродромов. Они могут быть также использованы для разметки дорожек, окраски элементов обстановки пути, придорожных сооружений, знаков, машин и механизмов. Краску кинематическим способом распыляют на машинах ЭД-40 и ЭД-50. Для нанесения на покрытие дороги линий из термопластика гравитационным методом применяют машину ДЭ-20.

Машина ДЭ-ЗА выполнена на базе самоходного шасси Т-16М. Специальное оборудование этой машины состоит из компрессора с ресивером, баков для краски и растворителя, рабочего органа, системы трубопроводов с пультом управления и выносного пистолета-краскораспылителя. Рабочее оборудование смонтировано на сварной платформе, закрепленной на раме шасси. Спереди машины для выдерживания направления движения при работе установлено визирное устройство. Работает машина следующим образом. Сжатый воздух от компрессора, привод которого осуществляется от двигателя шасси через карданную и ременную передачи, поступает в ресивер и далее одновременно в баки для краски и в краскораспылитель. Вытесняемая из баков краска поступает в краскораспылитель, где, смешиваясь с поступающим из ресивера сжатым воздухом, образует двухфазную диспергированную смесь, которая через форсунку краскораспылителя разбрызгивается на поверхность дорожного покрытия. Для промывки системы используют растворитель, который вытесняют из бака сжатым воздухом, поступающим из ресивера, и подают в краскопроводы, форсунку и в баки для краски.

Управление работой форсунки ручное или автоматическое с помощью электронного блока, состоящего из преобразователя, программного блока и исполнительного органа. Преобразователь состоит из мерного колеса, делительного диска и датчика импульсов. Программный блок построен на унифицированных бесконтактных элементах серии “Логика-Т”, которые формируют импульс включения исполнительного органа по программе “Штрих” и паузы - по программе “Промежуток”. Исполнительный орган представляет собой электропневматический вентиль, который вырабатывает на выходе пневматический импульс, позволяющий поднять запорную иглу и обеспечить поступление краски в смесительную полость краскораспылителя. Машина оборудована дополнительно пистолетом-краскораспылителем и струйным насосом для механизированной заправки баков краской и растворителем.

Маркировщик ДЭ-ЗА - это модернизация машины ДЭ-3, от которой он отличается установкой компрессора с принудительным охлаждением, конструкцией рабочего органа и наличием электронного блока системы автоматики вместо механической коробки изменения шага, используемой для нанесения прерывистых линий.

Маркировочная машина ДЭ-18 для привода компрессора имеет дополнительный двигатель. Баки для краски вместимостью по 500 л каждый имеют пневматический привод лопастных мешалок.

Маркировочная машина ДЭ-18А является модернизацией машины ДЭ-18. Машины ДЭ-18А выполнена на базе шасси автомобиля ГАЗ-53А и состоит из компрессоров, двух баков для краски, один из которых основной, а другой - дополнительный; бака для растворителя; четырех ресиверов; рабочего органа; визирного устройства; программного блока, унифицированного с таким же блоком машины ДЭ-ЗА и дополнительного оборудования. Трансмиссия машины состоит из трансмиссии базового автомобиля и демультипликатора, установленного между коробкой передач и главной передачей заднего ведущего моста автомобиля.

Рабочий орган ее смонтирован на несущей раме сзади машины и может перемещаться по направляющим влево и вправо за габарит машины; его основные части - три форсунки, три пары ограничительных дисков, краскосборники, пневмоцилиндр, два опорных колеса, каретка и система подвески. Форсунки предназначены для образования красковоздушной смеси и подачи ее на поверхность покрытия. Ограничительные диски формируют боковой контур маркировочных линий. Ширину знака устанавливают перемещением дисков по направляющим.

Маркировочная машина ДЭ-18А: 1 – визирное устройство; 2 – базовое шасси; 3 – привод компрессора; 4 – трансмиссия; 5 - основной бак для краски; 6 - пульт управления; 7- платформа; 8 – электрооборудование; 9 – рабочий орган; 10 – бак для растворителя

Для нанесения линий шириной 0,5-1 м внутренние диски снимают и распыляют краско-воздушную смесь двумя или тремя форсунками. Вертикальное положение форсунки и неизменное расстояние между ней и покрытием обеспечивают с помощью системы подвески, состоящей из четырехзвенного шарнирного параллелограммного механизма. Поднимают и опускают рабочий орган с форсунками и дисками с помощью пневмоцилиндра. Система управления работой форсунок позволяет наносить одновременно три линии с различными комбинациями штрихов и пропусков в каждой.

Внутри основного бака для краски установлена лопастная мешалка с ручным приводом. Бак для растворителя представляет собой две герметичные цилиндрические емкости, соединенные трубопроводами. Краскопроводную магистраль, баки для краски, форсунки и выносной краскораспылитель промывают растворителем. Дополнительное оборудование состоит из выносного пистолета-краскораспылителя, струйного насоса, обеспечивающего заправку баков краской и растворителем, и оборудования для установки заставок.

Маркировочная машина ЭД-40 предназначена для механизированного нанесения линий безопасности на проезжей части городских улиц и дорог и выполнена на базе автомобиля УАЗ-452Д. Рабочее оборудование состоит из рабочего органа, двух баков с краской, пульта управления, визира для ориентирования машины в процессе работы, стоек ограждения и дополнительного оборудования.

Для машины ЭД-40 доработан базовый автомобиль УАЗ-452Д: с автомобиля снята кабина и направление его движения изменено на противоположное; задний ведущий мост заменен специальным ведущим мостом, а передний - стал задним ведущим и управляемым мостом; в трансмиссии между сцеплением и коробкой передач установлен ходоуменьшитель, обеспечивающий также привод плунжерного насоса покрасочной системы; изменена компоновка механизмов управления машиной, рулевой колонки; с обеих сторон впереди машины установлены два бака с краской вместимостью 600 л, что позволяет разметить без дополнительной заправки 20-30 км дороги; сзади машины оборудовано место для размещения рабочих и хранения стоек ограждения. Система покраски машины состоит из подкачивающего и плунжерного насосов, разделительной камеры с клапанной коробкой, ресивера с предохранительным колпаком, фильтра тонкой очистки краскораспылителя, приемного фильтра-насоса, емкости с краской и краскораспылителя высокого давления.

При обратном ходе плунжера насоса создается разрежение и краска из емкости поступает через фильтр и обратный клапан клапанной коробки в разделительную камеру.

Работой краскораспылителя управляют с помощью электромагнитов, цепь питания которых замыкается в соответствии с необходимостью нанесения сплошных или плунжерных линий.

Машины для маркировки термопластическими материалами и комбинированные машины. Маркировочная машина ДЭ-20 предназначена для нанесения разделительной и краевой горизонтальной разметочных линий на проезжей части автомобильных дорог. Ее применяют для разметки предварительно очищенных усовершенствованных покрытий улиц и дорог в условиях умеренного климата при температуре 10-40°С в сухую погоду.

Оборудование, смонтированное на шасси автомобиля ГАЗ-53А, включает в себя блок из двух котлов, рабочий орган (маркер) с механизмом выдвижения, две группы газовых баллонов, установленных с каждой стороны платформы, систему циркуляции жидкого теплоносителя с насосной установкой, гидросистему, пульт управления.

Блок котлов, предназначенный для нагрева термопластика до рабочей температуры, состоит из двух баков, омываемых теплоносителем; внутри их установлены мешалки. Крутящий момент мешалке передается от гидромотора через муфту и редуктор. Под каждым баком установлены по две жаровые трубы, к которым подсоединены газовые горелки. На передней стенке блока котлов расположены датчики, контролирующие температуру термопластика. Разогретый термопластик из баков через коллектор поступает к рабочему органу.

Рабочий орган – маркер, расположенный под платформой машины с левой стороны, предназначен для нанесения термопластика на дорожное покрытие. Он состоит из двух емкостей, соединенных шаровой опорой и установленных на хвостовике коллектора. В них предусмотрено окно с крышкой для периодической очистки внутренней поверхности от термопластика. Обе емкости имеют двойные стенки, между которыми находится масло для подогрева поступающего из котла термопластика. Масляная рубашка емкости через штуцер гибким трубопроводом соединена с масляной рубашкой емкости, а через штуцер – со всасывающим трубопроводом системы циркуляции теплоносителя. На емкости установлен гидроцилиндр открытая заслонки маркера. Работой гидроцилиндра управляет электронный блок. Настройка блока производится в зависимости от того, какую линию (сплошную или прерывистую) дорожной разметки необходимо нанести. В нижней часта ем-ости расположены затвор и винт с чекой. Винтом регулируют открытие заслонки, т. е. толщину наносимой линии. Вытягивая чеку и отрывая упор, обеспечивают полное открытие заслонки, необходимое ля удаления инородных тел и слива остатков термопластика. Подъем опускание маркера осуществляют гидроцилиндром. Колесо предназначено для предотвращения поломки маркера при случайном наезде на препятствие.

Циркуляция его в зоне нагрева под котлами, в полостях маркера и трубах под баллонами обеспечивается шестеренным насосом. Заполнение гидросистемы рабочей жидкостью осуществляется насосом через штуцер вентиля и фильтр грубой очистки. Уровень рабочей жидкости в системе определяется щупом, установленным на блоке котлов. От насоса масло подается по нескольким линиям.

Гидравлическая система машины предназначена для управления заслонками маркера, а также для подъема и опускания маркера. Рабочая жидкость нагнетается в гидравлическую систему насосом из бака вместимостью 50 л и распределяется по трем направлениям: к гидромотору, который приводит во вращение насос системы теплоносителя и к гидромоторам, вращающим мешалки в баках для разогрева термопластика. Дроссели с регуляторами служат для поддержания перед гидромоторами определенного давления (16 МПа). Для предотвращения перегрузки насоса служит предохранительный клапан с переливным золотником. От гидромотора рабочая жидкость поступает к гидрораспределителю, который управляет открытием заслонки маркера с помощью гидроцилиндра. Подъем и опускание маркера осуществляются гидроцилиндром, рабочая жидкость к которому поступает от предохранительного клапана с переливным золотником.

Управление подачей рабочей жидкостью, в полости гидроцилиндра, производится двухзолотниковым распределителем, в корпус которого встроены предохранительный и перепускной клапаны.

Гидравлическая схема маркировочной машины ДЭ-20: 1 – масляный бак; 2 – насос; 3, 10 – манометр; 4, 5, 6 – дроссели с регуляторами; 7, 8, 9 – гидромоторы; 11, 16 – предохранительные клапаны с перепивными золотниками; 12 – гидрораспределитель с электрогидравлическим управлением; 13, 14 – гидроцилиндры; 15 – двухзолотниковый распределитель; 17 – магистральный фильтр

На сливе гидросистемы установлен фильтр с предохранительным клапаном.

На пульте управления размещены основные узлы управления гидравлической системой машины: дроссели с регуляторами, предохранительные клапаны с переливными золотниками, реверсивный золотник с электрогидравлическим управлением и манометры.

Для фиксации пройденного при маркировке пути и подачи сигналов в программный блок измерительным элементом служит опорное колесо, которое может свободно вращаться на оси. Машина оборудована визирным устройством, с помощью которого водитель может вести машину строго по линии разметки. Электрооборудование машины состоит из электрооборудования базового шасси ГАЗ-53А и дополнительного оборудования, включающего в себя программный блок управления рабочим органом, электрооборудование процесса регулирования температуры термопластика, световую и звуковую сигнализацию.

Машина ДЭ-21 имеет две сменные платформы с оборудованием для нанесения линий разметки лакокрасочными или термопластическими материалами и дооборудованного шасси автомобиля ГАЗ-53А, на котором установлены ходоуменьшитель, коробка отбора мощности с карданным валом и клиноременной передачей, визирное устройство и штепсельные разъемы. Платформы с технологическим оборудованием установлены на лонжероны шасси автомобиля и прикреплены струбцинами. Продолжительность Демонтажа одного оборудования и монтажа другого составляет в среднем 8 ч.

Оборудование маркировочной машины для нанесения линий лакокрасочными материалами унифицировано с оборудованием маркировочной машины ДЭ-18А и состоит из платформы, двух компрессоров с ресиверами, основного и дополнительного баков для краски, бака для растворителя, рабочего органа, пульта управления, системы сигнализации и рабочего места оператора. Компрессоры подачей 0,5 м3/ч каждый размещены на специальной раме, установленной на платформе на амортизаторах.

Рабочий орган состоит из трех форсунок, ограничительных дисков, краскосборника, пневмоцилиндра подъема и опускания рабочего органа, опорных колес и подвески. Рабочий орган смонтирован на направляющих за задним мостом автомобиля и может перемещаться влево и вправо за габарит машины.

В состав оборудования входят: струйный насос для механизированной заправки баков краской, устройство для установки заставок и выносной краскораспылитель для выполнения различных покрасочных работ. Оборудование для нанесения термопластика включает блок котлов, коллектор, рабочий орган, газовое оборудование, гидросистему, пневмосистему, систему циркуляции теплоносителя, пульты управления, рабочее место оператора и систему сигнализации.

Блок котлов машины ДЭ-21 унифицирован с блоком котлов маркировочной машины ДЭ-20. В нем усилен привод смесителей, в него введены фильтры для термопластика в линии коллектора, а котлы установлены с уклоном для улучшения слива материала. Каждый смеситель снабжен индивидуальным гидромотором. В гидросистеме установлен предохранительный клапан, исключающий поломки привода. Для обеспечения циркуляции теплоносителя в масляной рубашке котла установлен насос. Нагрев теплоносителя осуществляется четырьмя газовыми горелками низкого давления мощностью 38 кВт каждая.

Выдвижной рабочий орган установлен с левой стороны машины за задним колесом перед оператором. Рабочий орган опирается при работе на колесо, чем обеспечивается постоянный зазор между нижней кромкой рабочего органа и поверхностью дороги. На этом же опорном колесе установлен бесконтактный датчик пройденного пути. Для выполнения работ по нанесению линий различной ширины рабочий орган имеет сменные башмаки, оборудованные заслонками с гидроцилиндрами.

В оборудование для нанесения термопластика входит компрессор и расположенное перед рабочим органом специальное устройство, обеспечивающее очистку от пыли сжатым воздухом покрытия дороги, чем повышается качество работ и долговечность линий разметки. Машина снабжена прибором контроля температуры теплоносителя.

В схеме управления рабочим органом предусмотрен гидрозамок, позволяющий фиксировать рабочий орган так, чтобы щель, через которую вытекает материал, была всегда параллельна поверхности дороги. Для повышения надежности работы гидросистемы предохранительный клапан установлен на сливной линии. В напорной линии гидронасоса имеется распределитель, разгружающий гидросистему от чрезмерного давления при выключенных элементах гидросистемы. Управление рабочими органами машины может осуществляться вручную или автоматически.