Все о тюнинге авто

Принцип движения парусного судна. Физика движения парусной яхты При какой силе ветра поднимают паруса

Передвижение парусной яхты по ветру фактически определяется простым давлением ветра на ее парус, толкающим судно вперед. Однако, как показали исследования в аэродинамической трубе, путешествие под парусом против ветра подвергает парус воздействию более сложного набора сил.

Когда набегающий воздух обтекает вогнутую заднюю поверхность паруса, скорость воздуха уменьшается, в то время как при обтекании выпуклой передней поверхности паруса эта скорость растет. В результате на задней поверхности паруса образуется область повышенного давления, а на передней - пониженного. Разность давлений на двух сторонах паруса создает тянущую (толкающую) силу, которая перемещает яхту вперед под углом к ветру.

Парусная яхта, расположенная примерно под прямым углом к ветру (по морской терминологии - яхта идет галсом), быстро движется вперед. Парус подвергается воздействию тянущей и боковой сил. Если парусная яхта идет под острым углом к ветру, ее скорость замедляется из-за уменьшения тянущей силы и увеличения боковой. Чем сильнее парус повернут к корме, тем медленнее яхта движется вперед, в частности из-за большой боковой силы.

Парусная яхта не может плыть прямо против ветра, однако может продвигаться вперед, совершая серию зигзагообразных коротких перемещений под углом к ветру, называющихся галсами. Если ветер дует в левый борт (1), говорят, что яхта идет левым галсом, если в правый борт (2) - правым галсом. Для того чтобы быстрее пройти дистанцию, яхтсмен старается увеличивать до предела скорость яхты, регулируя положение ее паруса, как это показано на рисунке слева внизу. Для минимизации отклонения в сторону от прямой линии, яхта передвигается, меняя курс с правого галса на левый и наоборот. Когда яхта меняет курс, парус перебрасывается на другой борт, и при совпадении его плоскости с линией ветра какое-то время полощется, т.е. находится в бездействии (средний рисунок под текстом). Яхта попадает в так называемую мертвую зону, теряя скорость до тех пор, пока ветер снова на надует парус с противоположной стороны.

ДВИЖУЩАЯ СИЛА ВЕТРА

На сайте NASA опубликованы очень интересные материалы о разных факторах оказывающих влияние на формирование крылом самолета подъемной силы. Там же представлены интерактивные графические модели,которые демонстрируют, что подъемная сила может формироваться и симметричным крылом за счет отклонения потока.

Парус, находясь под углом к воздушному потоку, отклоняет его (рис. 1г). Идущий через «верхнюю», подветренную сторону паруса, воздушный поток проходит более длинный путь и, в соответствии с принципом неразрывности потока, движется быстрее, чем с наветренной, «нижней» стороны. Результат - давление с подветренной стороны паруса меньше, чем с наветренной стороны.

При движении курсом фордевинд, когда парус установлен перпендикулярно к направлению ветра, степень увеличения давление с наветренной стороны больше, чем степень понижения давления с подветренной стороны, другими словами ветер больше толкает яхту, чем тянет. По мере того, как яхта будет поворачивать острее к ветру, это соотношение будет меняться. Так, если ветер дует перпендикулярно курсу яхты, увеличение давления на парус с наветренной стороны оказывает меньшее влияние на скорость, чем снижение давления с подветренной стороны. Другими словами парус больше тянет яхту, чем толкает.

Движение яхты происходи благодаря тому, что ветер взаимодействует с парусом. Анализ этого взаимодействия приводит к неожиданным, для многих новичков, результатам. Оказывается, что максимальная скорость достигается, вовсе не когда ветер дует точно сзади, а пожелание «попутного ветра» несет в себе совершенно неожиданный смысл.

Как парус, так и киль, при взаимодействии с потоком, соответственно, воздуха или воды, создают подъемную силу, следовательно, для оптимизации их работы можно применить теорию крыла.

ДВИЖУЩАЯ СИЛА ВЕТРА

Воздушный поток обладает кинетической энергией и, взаимодействуя с парусами, способен двигать яхту. Работа, как паруса, так и крыла самолета, описывается законом Бернулли, согласно которому увеличение скорости потока приводит к уменьшению давления. При перемещении в воздушной среде, крыло разделяет поток. Часть его обходит крыло сверху, часть снизу. Крыло самолета спроектировано так, что воздушный поток, проходящий над верхней стороной крыла движется быстрее, чем поток, который проходит под нижней частью крыла. Результат - давление над крылом значительно ниже, чем под. Разница давления и есть подъемная сила крыла (рис. 1а). Благодаря сложной форме, крыло способно генерировать подъемную силу даже в том случае, когда рассекает поток, который движется параллельно плоскости крыла.

Парус может двигать яхту только в том случае, если находится под некоторым углом к потоку и отклоняет его. Дискуссионным остается вопрос о том, какая часть подъемной силы связана с эффектом Бернулли, а какая является результатом отклонения потока. Согласно классической теории крыла подъемная сила возникает исключительно в результате разницы скоростей потока над и под ассиметричным крылом. Вместе с тем хорошо известно, что и симметричное крыло способно создавать подъемную силу, если установлено под определенным углом к потоку (рис. 1б). В обоих случаях угол между линией соединяющей переднюю и заднюю точки крыла и направлением потока, называется углом атаки.

Подъемная сила увеличивается с увеличением угла атаки, однако эта зависимость работает только при небольших значениях этого угла. Как только угол атаки превышает некий критический уровень и происходит срыв потока, на верхней поверхности крыла образуются многочисленные вихри, а подъемная сила резко уменьшается (рис. 1в).

Яхтсмены знают, что фордевинд далеко не самый быстрый курс. Если ветер той же силы дует под углом 90 градусов к курсу, яхта движется намного быстрее. На курсе фордевинд сила, с которой ветер давит на парус, зависит от скорости яхты. С максимальной силой ветер давит на парус стоящей без движения яхты (рис. 2а). По мере увеличения скорости давление на парус падает и становится минимальный, когда яхта достигает максимальной скорости (рис. 2б). Максимальная скорость на курсе фордевинд всегда меньше скорости ветра. Причин тому, несколько: во-первых, трение, при любом движении некоторая часть энергии расходуется на преодоление различных сил препятствующих движению. Но главное то, что сила, с которой ветер давит на парус, пропорциональна квадрату скорости вымпельного ветра, а скорость вымпельного ветра на курсе фордевинд равна разнице скорости истинного ветра и скорости яхты.

Курсом галфвинд (под 90º к ветру) парусные яхты способны двигаются быстрее ветра. В рамках этой статьи мы не будем обсуждать особенности вымпельного ветра, отметим только, что на курсе галфвинд, сила, с которой ветер давит на паруса, в меньшей степени зависит от скорости яхты (рис. 2в).

Основным фактором, который препятствует увеличению скорости, является трение. Поэтому парусники с небольшим сопротивлением движению способны достигать скорости, намного превышающей скорость ветра, но не на курсе фордевинд. Например, буер, за счет того, что коньки обладают ничтожным сопротивлением скольжения, способен разогнаться до скорости 150 км/ч при скорости ветра 50 км/ч и даже меньше.

The Physics of Sailing Explained: An Introduction

ISBN 1574091700, 9781574091700

Думаю, что многие из нас воспользовались бы шансом погрузиться в морскую бездну на каком-нибудь подводном аппарате, но все же, большинство бы предпочло морское путешествие на паруснике. Когда еще не было ни самолетов, ни поездов были лишь только парусники. Без них мир был, не стал таким.

Парусники с прямыми парусами привезли европейцев в Америку. Их устойчивые палубы и вместительные трюмы доставили людей и припасы для строительства Нового мира. Но и у этих старинных кораблей были свои ограничения. Они шли медленно и практически в одном направлении по ветру. С тех пор многое изменилось. Сегодня используют совсем другие принципы управления силой ветра и волн. Так что если захотите прокатиться на современном , придется подучить физику.

Современный парусный спорт это не просто движение по ветру, это нечто воздействующее на парус, и заставляющее его лететь подобно крылу. И это невидимое «нечто» называется подъемной силой, которую ученые называют боковой силой.

Внимательный наблюдатель не мог не заметить, что не зависимо от того куда дует ветер парусная яхта всегда движется туда, куда нужно капитану - даже когда ветер встречный. В чем же секрет такого удивительного сочетания упрямства и послушания.

Многие даже не догадываются, что парус это крыло, и принцип работы крыла и паруса один. В его основе лежит подъемная сила, только если подъемная сила крыла летательного аппарата, используя встречный ветер, толкает самолет вверх, то вертикально расположенный парус направляет парусник вперед. Чтобы объяснить это с научной точки зрения необходимо вернуться к истокам - как работает парус.

Посмотрите, на смоделированный процесс, который показывает, как воздух действует на плоскость паруса. Здесь можно видеть, что потоки воздуха под моделью, имеющие больший изгиб, изгибаются, чтобы обойти ее. При этом потоку приходиться немного ускориться. В результате возникает область низкого давления - это и генерирует подъемную силу. Низкое давление на нижней стороне тянет парус к низу.

Другими словами область с высоким давлением пытается передвинуться к области низкого давления, оказывая давления на парус. Возникает разница давлений, что порождает подъемную силу. Благодаря форме паруса, с внутренней наветренной стороны, скорость ветра меньше, чем с подветренной стороны. На внешней стороне образуется разрежение. В парус в буквальном смысле всасывается воздух, который и толкает парусную яхту вперед.

На самом деле этот принцип довольно прост для понимания, достаточно присмотреться на любое парусное судно. Фокус здесь в том, что парус как бы ни был расположен, передает судну энергию ветра и даже если визуально кажется, что парус должен тормозить яхту, центр приложения сил находится ближе к носу парусника, и сила ветра обеспечивает поступательное движение.

Но это теория, а на практике все чуть по-другому. На самом деле парусная яхта не может идти против ветра - она движется под определенным углом к нему, так называемыми галсами.

Парусник движется за счет баланса сил. Паруса действуют как крылья. Большая часть производимой ими подъемной силы направлено в сторону, и лишь небольшое количество вперед. Впрочем, секрет в этом чудесном явление в так называемом «невидимом» парусе, который находится под днищем яхты. Это киль или на морском языке - шверт. Подъемная сила шверта также производит подъемную силу, которая тоже направлена в основном в бок. Киль противостоит крену и противоположной силе действующей на парус.

Кроме подъемной силы возникает еще и крен - вредное для движения вперед и опасное для экипажа судна явление. Но для того на яхте и существует команда, чтобы служить живым противовесом неумолимым физическим законам.

В современном паруснике и киль, и парус совместными усилиями направляют парусник вперед. Но как подтвердит любой начинающий моряк на практике все намного сложнее, чем в теории. Опытный моряк знает, что малейшие изменения изгиба паруса дают возможность получить больше подъемной силы и контролировать ее направление. Изменяя изгиб паруса, умелый моряк управляет размером и расположением области, производящей подъемную силу. С помощью глубокого изгиба направленного вперед можно создать большую зону давления, но если изгиб слишком велик или передняя кромка слишком крутая молекулы воздуха, обтекающие перестанут следовать его изгибу. Другими словами, если у предмета острые углы частицы потока не смогут совершить поворот - слишком силен импульс движения, это явление получило название «отделившийся поток». Результат этого эффекта - парус «заполощет», потеряв ветер.

А вот еще несколько практических советов использования ветровой энергии. Оптимальный курс выхода на ветер (гоночный бейдевинд). Моряки называют его «ход против ветра». Вымпельный ветер, имеющий скорость 17 узлов, ощутимо быстрее истинного ветра, создающего волновую систему. Разница их направлений составляет 12°. Курс к вымпельному ветру - 33°, к истинному ветру - 45°.

Вымпельный ветер

Попробуем понять за счет, каких сил, и на основании каких принципов происходит движение парусного судна под действием ветра. Рассмотрим только косые паруса, как наиболее часто встречающиеся в настоящее время. Косое парусное вооружение бермудского типа это основное вооружение большинства современных как одномачтовых, так и двухмачтовых судов. Все спортивные и круизные одномачтовые яхты так же вооружаются бермудским шлюпом.

Это вооружение дает максимальные возможности по выбору курса относительно направления ветра и требует существенно меньшего экипажа для управления парусами и не требует такой высокой его выучки как в случае применения прямого парусного вооружения.

Замечательной особенностью косого паруса является его способность создавать тяговое усилие на курсах до 30-40 градусов к направлению ветра.

При этом нужно учитывать, что парусное судно движется относительно вымпельного или кажущегося ветра, а не относительно истинного или метеорологического ветра.

При движении любого объекта в воздушной среде возникает поток набегающего воздуха, скорость которого определяется скоростью движения объекта. Соответственно, даже при полном отсутствии ветра (штиль) наблюдатель, находящийся на судне будет ощущать ветер равный скорости судна - курсовой ветер, который будет по величине равен скорости судна, а по направлению противоположен направлению движения судна. Таким образом, парусное судно, при своем движении испытывает действие двух потоков воздуха:

Действие потока, вызванного наличием истинного ветра;

Действие потока, вызванного движением судна – курсового ветра.

Для определения результирующего потока воздуха, ощущаемого наблюдателем, находящимся на движущемся объекте, необходимо произвести векторное сложение потоков. Результирующий вектор и будет по скорости и направлению, ощущаемым или кажущимся ветром, который называется вымпельным ветром. Этот ветер и будет рассматриваться как ветер, действующий на паруса судна при его движении (рис 1).

Этот ветер является единственным ветром, с которым взаимодействуют паруса, а разложение его на истинный ветер и курсовой является результатом анализа исходных воздушных потоков.

Вымпельный ветер является величиной переменной даже при стабильном по скорости и направлению истинном ветре, так как его скорость и направление зависят от скорости и направления движения судна. Для простоты рассуждений рассмотрим случай, при котором рис. 1.

истинный ветер направлен под прямым углом к направлению движения судна и скорость истинного ветра равна скорости судна (рис. 2). Из рисунка видно, что при движении под углом 90 градусов к истинному ветру судно движется под углом 45 градусов к вымпельному ветру.

истинный В соответствие с изложенным выше, можно

ветер вымпельный ветер утверждать, что два судна, движущиеся од-

ним и тем же курсом, при одних и тех же ветровых

условиях, но с разными скоростями относительно воды будут двигаться под разными углами к вымпельному ветру. Судно, движущееся с более высокой скоростью, будет идти острее к вымпель-ному ветру, сохраняя тот же курсовой угол относительно истинного ветра. При этом, ветро- указатели на то пах мачт этих судов будут находить-

курсовой ветер ся под разными углами к ДП судна, фиксируя направ-

рис. 2 ление вымпельного ветра каждого из судов (рис. 3).

судно 1 судно 2

Из рисунка видно, что судно, идущее с большей скоростью, идет под меньшим углом к вымпельному ветру. Из этого можно сделать вывод о том, что при увеличении скорости движения судна вымпельный ветер заходит (уменьшается угол между направлением движения судна и вымпельным ветром). При дальнейшем увеличении скорости судна (лучше обводы, меньше трение, эффективнее работают паруса, другая конструкция корпуса судна) угол между направлением движения судна и вымпельным ветром станет меньше минимального лавировочного угла (минимального угла между направлением движения судна и вымпельным ветром, при котором сохраняется возможность эффективной работы парусов). После этого судно, имеющее большую скорость, будет вынуждено увалиться (увеличить угол между направлением движения судна и направлением вымпельного ветра) до восстановления минимального лавировочного угла. Этим объясняются разные углы выхода на ветер (угол между направлением истинного ветра и направлением движения судна). При этом, скорость выхода на ветер (скорость сближения с точкой прихода, находящейся на ветре) может быть больше у судна с большим углом выхода на ветер, но и большей скоростью движения. В качестве примера рассмотрим скорость выхода на ветер килевой яхты, спортивного швертбота и катамарана (рис. 4).

Острее к ветру идет килевая яхта, имеющая наименьшую, из этих судов, скорость движения. За ней идет спортивный швертбот и наименее остро к истинному ветру идет спортивный катамаран. Каждое из этих судов идет под одним и тем же углом к вымпельному ветру, но под разными углами к истинному ветру. Но, при этом, самая высокая скорость выхода на ветер будет у спортивного катамарана. Из рассмотрения треугольника скоростей становится понятной возможность приводится к истинному ветру на порывах ветра (кратковременное ускорение ветра). В порыве скорость истинного ветра возрастает, а скорость судна остается, в течение какого-то времени, прежней. Вымпельный ветер отходит и появляется возможность привестись и восстановить лавировочный угол относительно вымпельного ветра (рис. 5)

рис. 4

Килевая яхта

швертбот

Катамаран


Через некоторое время скорость судна возрастет, и оно будет вынуждено увалиться до прежнего курса относительно истинного ветра, сохраняя угол относительно вымпельного ветра. Однако, увеличение скорости судна возможно до достижения скорости, предельной для движения судна в водоизмещающем режиме (скорость судна в водоизмещающем режиме, выраженная в узлах, не может превышать длину судна, выраженную в метрах). Следовательно, при дальнейшем увеличении скорости ветра скорость судна не будет возрастать и курс судна относительно истинного ветра может быть острее.

Очень важным является наличие течений в районе плавания судна, с точки зрения поведения вымпельного ветра. При плавании на течении скорость судна векторно складывается со скоростью течения. В результате меняется абсолютная скорость судна и происходит изменение скорости и направления вымпельного ветра. При движении с попутным течением вымпельный ветер заходит, а при движении со встречным течением отходит. Следовательно, при попутном течении лавировочный угол увеличивается, а при встречном ветре – уменьшается. При этом скорость выхода яхты на ветер сохраняется практически неизменной. При направлении течения по направлению или против направления истинного ветра происходит изменение скорости истинного ветра. При однонаправленных ветре и течении вымпельный ветер заходит, а при разнонаправленных отходит, в силу увеличения скорости истинного ветра. Взаимодействие ветра и течения менят лавировочные углы судна относительно истинного ветра.

Современное навигационное оборудование дает возможность получать информацию не только о направлении и силе вымпельного ветра, но и о силе и направлении истинного ветра, путем пересчета треугольника скоростей (рис. 1). GPS дает информацию о скорости и направлении движения судна, а анеморумбометр о скорости и направлении вымпельного ветра. Путем пересчета треугольника скоростей система получает информацию о скорости и направлении истинного ветра.

Понимание поведения вымпельного ветра является ключевым для планирования маршрута движения судна, при известном направлении и скорости истинного ветра и фактической скорости парусного судна.

Однако для тихоходных судов угол между направлением истинного и вымпельного ветра незначителен и можно, с определенной степенью точности, утверждать, что этот угол находится в пределах 10-20 градусов.

Воздействие ветра на корабль определяется его на­правлением и силой, формой и размерами площади па­русности корабля, расположением центра парусности, значениями осадки, крена и дифферента.

Действие ветра в пределах курсовых углов 0-110° вызывает потерю скорости, а при больших курсовых уг­лах и силе ветра не свыше 3-4 баллов - некоторое ее приращение.

Действие ветра в пределах 30-120° сопровождается дрейфом и ветровым креном.

На движущийся корабль действует относительный (кажущийся) ветер, который связан с истинным следую­щими отношениями (рис. 7.1)(2):

Где Vи - скорость истинного ветра, м/с;

VK-скорость кажущегося ветра, м/с;

V0 - скорость хода корабля, м/с;

βо-угол дрейфа корабля, град.

Yk - угол кажущегося ветра;

Yи-угол истинного ветра.

Удельное давление ветра на корабль в кгс/м&sub2; рассчи­тывается по формуле

Где W - скорость ветра, м/с.


Рис. 7.1. Зависимость истинного и кажущегося ветра


Рис. 7.2. Действие кренящего момента

Так, при урагане, когда скорость ветра достигает 40-50 м/с, величина ветровой нагрузки достигает 130- 200 кгс/м2.

Полное давление ветра на корабль определяется из выражения P = pΩ, где &Omrga; - площадь парусности корабля.

Величина кренящего момента Мкр (рис. 7.2) в кгс м для случая установившегося движения и действия силы давления ветра Р, перпендикулярной ДП корабля, опре­деляется из выражения

Где zn - ордината центра парусности, м;

Т - средняя осадка корабля, м.

Волнение моря оказывает наиболее существенное вли­яние на корабль. Оно сопровождается действием на кор­пус значительных динамических нагрузок и качкой ко­рабля. При плавании на волнении увеличивается сопро­тивление корпуса корабля и ухудшаются условия совместной работы винтов, корпуса и главных двигателей.


Рис. 7.3. Элементы волн

В результате снижается скорость, увеличивается нагрузка на главные машины, повышается расход топлива и умень­шается дальность плавания корабля. Форма и размеры волн характеризуются следующими элементами (рис. 7.3):

Высота волны h - расстояние по вертикали от вер­шины до подошвы волны;

Длина волны λ - расстояние по горизонтали между двумя соседними гребнями или подошвами;

Период волны t - промежуток времени, в течение которого волна проходит расстояние, равное своей дли­не(3);

Скорость волны С - расстояние, проходимое вол­ной в единицу времени.

По происхождению волны подразделяются на ветро­вые, приливо-отливные, анемобарические, волны земле­трясения (цунами) и корабельные. Наиболее распространенными являются ветровые волны. Различают три типа волнения: ветровое, зыбь и смешанное. Ветровое волне­ние - развивающееся, оно находится под непосредствен­ным воздействием ветра в отличие от зыби, представляю­щей собой инерционное волнение, или волнение, вызванное штормовым ветром, дующим в удаленном районе. Профиль ветровой волны не симметричен. Ее подветрен­ный склон круче, чем наветренный. На вершинах ветро­вых волн образуются гребни, верхушки которых под дей­ствием ветра заваливаются, образуя пену (барашки), а при сильном ветре срываются. Направление ветра и на­правление ветровых волн в открытом море, как правило, совпадают или разнятся на 30-40°. Размеры ветровых волн зависят от скорости ветра и продолжительности его воздействия, длины пути ветро­вых потоков над водной поверхностью и глубины данного района (табл. 7.1).

ТАБЛИЦА 7.1. МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ ЭЛЕМЕНТОВ ВОЛН ДЛЯ ГЛУБОКОГО МОРЯ (Н/Λ > 1/2)

Наиболее интенсивный рост волны наблюдается при отношении C/W < 0,4-0,5. Дальнейшее увеличение этого отношения сопровождается уменьшением роста волн. По­этому волны опасны не в момент наибольшего ветра, а при последующем его ослаблении.

Для приближенных расчетов средней высоты волн ус­тановившегося океанского волнения пользуются форму­лами:

При ветре до 5 баллов

При ветре свыше 5 баллов

Где Б - сила ветра в баллах по шкале Бофорта (§ 23.3).

В условиях развитого волнения имеет место интерфе­ренция отдельных волн (до 2% общего количества и бо­лее), которые достигают максимального развития и пре­вышают среднюю высоту волн в два-три раза. Такие вол­ны особенно опасны.

Наложение одной волновой системы на другую наибо­лее интенсивно происходит при изменении направления ветра, частом чередовании штормовых ветров и перед фронтом тропических циклонов(4).

Энергия волн развитого волнения исключительно вели­ка. Для корабля, лежащего в дрейфе, динамическое воз­действие волн может быть определено из выражения р=0,1 τ² где τ - истинный период волны, с.

Так, для периодов волн около 6-10 с величина Р мо­жет достигать внушительных значений (3,6-10 т/м²).

При движении корабля курсом против волны динами­ческое воздействие волн будет возрастать пропорциональ­но квадрату скорости корабля, выраженной в метрах в се­кунду.

Длина волны в метрах, скорость в метрах в секунду и период в секундах связаны между собой следующими соотношениями:

Практически движущийся корабль встречает не истин­ный, а относительный (кажущийся) период волны τ", ко­торый определяется из выражения

Где а - курсовой угол фронта гребня волны, измеренный по любому борту.

Плюс относится к случаю движения против волны, минус - по волне.

При изменении курса корабль располагается относи­тельно приведенной длины волны λ":

Характер качки корабля имеет сложную зависимость между элементами волн (h, λ, τ и С) и элементами ко­рабля (L, D, Т1,2 и δ).

Безопасность корабля с точки зрения остойчивости определяется не только его конструкцией и распределе­нием грузов, но и курсом, а также скоростью. В условиях развитого волнения непрерывно меняется форма дейст­вующей ватерлинии. Соответственно изменяются форма погруженной части корпуса, плечи остойчивости формы и восстанавливающие моменты.

Пребывание корабля на подошве волны сопровожда­ется увеличением восстанавливающих моментов. Пребыва­ние корабля (особенно длительное) на гребне волны опасно и может привести к опрокидыванию. Наиболее опасна резонансная качка, при которой период собствен­ных колебаний корабля T1,2 равен видимому (наблюдае­мому) периоду волны?" Характер бортовой резонансной качки показан на рис. 7.4. Как следует из рисунка, явление резонанса наблюдается при отношении 0,7 < T1 /τ" < 1,3

Особенно опасна резонансная качка при положении корабля лагом к волне.
При следовании корабля курсом против волны зна­чительно возрастают потери в скорости, происходят ого­ление оконечностей и резкие броски оборотов. Удары волн в днище носовой оконечности (явление «слемминга») могут привести к деформации корпуса и срыву от­дельных механизмов и устройств с фундаментов.

При следовании по волне корабль в меньшей степени подвержен ударам волн. Однако следование его по вол­не со скоростью, близкой к скорости волны VK = (0,6--1,4) С (корабль «оседлал» волну), приводит к резкой потере поперечной остойчивости в связи с изменением формы и площади действующей ватерлинии, а это ведет к возникновению гироскопического момента, действую­щего в плоскости ватерлинии и значительно ухудшаю­щего управляемость корабля.


Рис. 7.4. Резонансная качка

Наиболее опасно плавание малого корабля на попутном волнении, когда λ=L ко­рабля, а VK=C.

Универсальная диаграмма качки Ю.В. Ремеза

Универсальная диаграмма качки определяет зависи­мость наблюдаемых элементов волн от изменения элемен­тов движения корабля.

Диаграмма рассчитана по формуле

Где V - скорость корабля, уз.

Диаграмма определяет зависимость между X и V sin a при различных значениях т". Она построена относительно преобладающей системы волн, которая может быть выде­лена на любом волнении и оказывает наиболее сущест­венное влияние на качку корабля (§ 23.4). Уни­версальная диаграмма может быть использована только в районах с достаточно большими глубинами (более 0,4Х волны).

Применение универсальной диаграммы качки позво­ляет решить следующие основные задачи:
- определить курс и скорость, при которых корабль может попасть в положение резонансной качки (килевой и бортовой);

Определить длину волны в районе плавания;

Определить сектора курсов и диапазоны скоростей, при которых корабль будет испытывать сильную качку, близкую к резонансной;

Определить курсы и скорости, при которых корабль будет находиться в состоянии наиболее опасной пони­женной поперечной остойчивости;

Определить курсы и скорости, при которых ко­рабль будет испытывать явление «слеминга».

(1) Дальнейшее усиление ветра сопровождается ветровым волне­нием, снижающим скорость корабля.
(2) Координаты истинного ветра связаны с землей, а кажуще­гося с кораблем.
(3) Практически движение частиц воды ветрового волнения про­исходит по орбитам, близким по форме к окружности или эллипсу, Перемещается лишь профиль волны.
(4) Характер волнообразования и его связь с элементами ветра подробно рассматриваются в курсе океанографии.